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What is Magnetic Reconnection?

Magnetic Energy                   Kinetic Energy

Many applications
Space Plasmas

Laboratory Experiments

Astrophysical Plasmas
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Reconnection in Space Plasmas



Reconnection in Laboratory Plasmas

MRX- PPPL

RSX  - Los Alamos

VTF - MIT



What is a Current Sheet?

Current  layer  + corresponding field reversal
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SciSearch Database 
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~ 10,000 papers 
since 1960



Examples of Current Sheets

• Magnetotail

• Magnetopause

• Heliospheric current sheet

• Plasma tail of comets

• Solar flares & prominences

• Simple geometry to study magnetic reconnection

• Laboratory plasmas – MRX experiment at PPPL

www-spof.gsfc.nasa.gov

Figures courtesy of Hantao Ji (PPPL)

www-spof.gsfc.nasa.gov



Topological Consequences
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More Terminology
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Collisional vs Collisionless Reconnection

1. How does reconnection proceed so
rapidly in collisionless regimes?

Questions for Collisionless Regime:

Onset problem
2.  How does it get started
     in the first place?
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What equations describe a plasma?
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Vlasov-Maxwell Theory

=
s
qs fs dv J =

s
qs v f s dv• Coupled by first 2 moments

• Complete description of collisionless plasma

• Very difficult to solve  - 6D phase space!

• Fluid description is much easier
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Fluid Description of Plasma

Take velocity space moments of the Vlasov Equation:
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Mass conservation

Momentum conservation

Closure Problem - Each equation contains higher order moment!



MHD Model
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Evolution Equation for B Field
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Frozen-in Condition

Magnetic Flux
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• Reconnection rate

• Steady-state reconnection

• Collisionless reconnection

• Fast reconnection

Define Basic Terms
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Reconnection
Rate

Petschek’s Model  - 1964
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Hall Mediated Fast Reconnection  1995-2001
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Hall Mediated Reconnection
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GEM Challenge
Birn, et al. 2001
Shay, et al. 2001
Pritchet, 2001
Hesse et al. 2001
Ma & Bhattacharjee, 2001
Otto, 2001

“Universal”  Fast 
Reconnection Rate

Uin

VA

∼ 0.1

1.  Electron physics
2.  Most plasma parameters
3.  System size

  Claim result is 
independent of

tΩci

Shay & Drake 1998
Rogers et al 2001
Shay et al 1999
Shay et al 2004
Huba & Rudakov 2004



Coupled by first 2 moments

Complete description of collisionless plasma

Possible to add collisions (difficult to do rigorously)

Easy to solve Maxwell’s equations

Vlasov is more difficult - Vlasov code vs PIC Code

Kinetic Simulation
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Introduce “super-particles” - Lagrangian tracers

Create spatial grid (cells)

Interpolate position and velocity of particle onto grid

Compute resulting E and B fields

Push particles using these self-consistent fields

Evolution of this system obeys a kinetic equation

PIC = Particle-in-cell

Electron

Ion

N particles/cell

For large N,
kinetic equation 

approaches Vlasov

ρ 	J



Parallel Kinetic Simulation

Node 1 Node 2 Node 3 Node 4 Node 5

64 processor
Linux Cluster33 - SMP Nodes

2 Opteron CPU’s in each 
5 GB RAM - 165 GB Total
4 TB Raid Storage
Gigabit Ethernet



• Artificial simulation parameters

• Simulations are mostly 2D

• Small system size

• Short simulation time

• Periodic boundary conditions

Pitfalls of PIC Simulation
mi

me

ωpe

Ωce



Large Open Boundary Case
(a) tΩci = 75

(c) tΩci = 150

(b) tΩci = 85

(d) tΩci = 300

(e) tΩci = 400
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Future Work

• Essential to understand how these results scale 
with mass ratio and plasma parameters 

• Evolution in 3D may be dramatically different due to 
large variety of possible plasma instabilities

• Unlikely to solve the problem with “brute force” 
computing alone - need theory, space observations, 
laboratory experiments

• To fully understand the physics of collisionless 
reconnection remains an enormous challlenge




